PATRICK WALLS

Department of Mathematics University of British Columbia 1984 Mathematics Road Vancouver, BC V6T 1Z2 pwalls@math.ubc.ca
patrickwalls.github.io
github.com/patrickwalls
604-822-3045

Employment

Associate Professor Teaching, University of British Columbia, 2020–Present Instructor, University of British Columbia, 2015–2020 Postdoctoral Fellow, McMaster University, 2013–2015

Education

PhD, University of Toronto, Mathematics, 2007–2013

MSc, University of British Columbia, Mathematics, 2005–2007

BSc, University of Calgary, Mechanical Engineering, 1999–2005

BSc, University of Calgary, Mathematics, 1999–2005

Awards

2019 Faculty of Science Excellence in Service Award

Teaching

Session	Course	Title	Students
2025W1	MATH 307	Applied Linear Algebra	120
2025W1	MATH 100	Differential Calculus with Applications	342
2025W1	MATH 100	Differential Calculus with Applications	467
2024W2	MATH 441	Mathematical Modelling: Optimization Problems	38
2024W2	MATH 210	Introduction to Mathematical Computing	73

2024W2	MATH 210	Introduction to Mathematical Computing	17
2023W2	MATH 441	Mathematical Modelling: Optimization Problems	43
2023W2	MATH 210	Introduction to Mathematical Computing	80
2023W2	MATH 210	Introduction to Mathematical Computing	34
2023S1	MATH 307	Applied Linear Algebra	76
2022W2	MATH 210	Introduction to Mathematical Computing	118
2022W1	MATH 307	Applied Linear Algebra	55
2022W1	MATH 441	Mathematical Modelling: Optimization Problems	47
2022S1	MATH 307	Applied Linear Algebra	99
2021W2	MATH 210	Introduction to Mathematical Computing	184
2021W2	MATH 254	Multivariable and Vector Calculus for Mechanical Engineering	131
2021W1	MATH 258	Differential Equations for Mechanical Engineering	124
2021W1	MATH 307	Applied Linear Algebra	115
2021S1	MATH 307	Applied Linear Algebra	102
2020W2	MATH 254	Multivariable and Vector Calculus for Mechanical Engineering	123
2020W1	MATH 258	Differential Equations for Mechanical Engineering	118
2020W1	MATH 210	Introduction to Mathematical Computing	187
2020S1	MATH 307	Applied Linear Algebra	106
2019W2	MECH 358	Engineering Analysis	108
2019W2	MATH 254	Multivariable and Vector Calculus for Mechanical Engineering	123
2019W1	MATH 258	Differential Equations for Mechanical Engineering	127
2019W1	MATH 210	Introduction to Mathematical Computing	118
2019S1	MATH 307	Applied Linear Algebra	107
2018W2	MECH 358	Engineering Analysis	106
2018W2	MECH 222	Multivariable and Vector Calculus for Mechanical Engineering	121
2018W1	MECH 221	Differential Equations for Mechanical Engineering	124
2018W1	MATH 210	Introduction to Mathematical Computing	109
2018W1	MATH 100	Differential Calculus with Applications to Science and Engineering	141
2018W1	DSCI 511	Programming for Data Science	69
2017W2	MECH 222	Multivariable and Vector Calculus for Mechanical Engineering	129
2017W2	MATH 210	Introduction to Mathematical Computing	97
2017W1	MECH 221	Differential Equations for Mechanical Engineering	133
2017W1	MATH 100	Differential Calculus with Applications to Science and Engineering	101
2017W1	MATH 100	Differential Calculus with Applications to Science and Engineering	197

2017W1	DSCI 511	Programming for Data Science	42
2017S1	MATH 215	Elementary Differential Equations I	125
2016W2	MECH 222	Multivariable and Vector Calculus for Mechanical Engineering	130
2016W2	MATH 210	Introduction to Mathematical Computing	107
2016W1	MECH 221	Differential Equations for Mechanical Engineering	123
2016W1	MATH 180	Differential Calculus with Physical Applications	213
2016W1	MATH 100	Differential Calculus with Applications to Science and Engineering	115
2015W2	MATH 210	Introduction to Mathematical Computing	88
2015W2	MATH 152	Linear Systems	103
2015W2	MATH 152	Linear Systems	235
2015W1	MECH 221	Differential Equations for Mechanical Engineering	130
2015W1	MATH 104	Differential Calculus with Applications to Social Sciences	129
			6249

Projects

Mathematical Python

patrickwalls.github.io/mathematicalpython

Web-based open source textbook on mathematical computing with Python and Jupyter. Based on my course notes for MATH 210, consists of 25+ Jupyter notebooks with exercises and covers basic Python programming and numerical methods.

MATH 360 Mathematical Modelling

ubcmath.github.io/MATH360

New course design on mathematical modelling including differential equations, probability and data-driven models.

MATH 307 Applied Linear Algebra

ubcmath.github.io/MATH307

Web-based open source textbook on linear algebra with applications built with JupyterBook.

Python for UBC MATH

ubcmath.github.io/python

Instructional material for UBC students to get up and running with Python and Jupyter.

MATLAB for UBC MATH

ubcmath.github.io/matlab

Instructional material for UBC students to get up and running with MALTAB Online.

MATH 316 Partial Differential Equations

ubcmath.github.io/MATH316

Web-based open source textbook on partial differential equations built with JupyterBook.

MATH 441 Discrete Optimization Problems

Mathematical modelling and optimization course redesign including linear optimization, combinatorial optimization and convex optimization.

Interactive Course Map

github.com/UBCMath/coursemap

Interactive course map of UBC Math undergraduate programs created with D3.js.

mbgrader

github.com/patrickwalls/mbgrader

Custom web application for batch grading MATLAB assignments. "Batch grading" means the app compares numeric data from all student responses and creates a batch for each unique response. Batches are then reviewed and graded by a human grader with feedback. Ideally, mbgrader reduces hundreds of responses to less than 10 batches for a question. Used in MATH 152, 221 and 215/255 and impacts 3000+ students annually.

MATH 152 Computer Labs

gitlab.math.ubc.ca/pwalls/math152

MATLAB computer lab exercises and tutorials for MATH 152 Linear Systems.