MATH 254 for MECH 222

MATH 254 for MECH 222 is an introduction to multivariable and vector calculus with applications in mechanical engineering. The course is divided into three main topics: multiple integrals, partial derivatives and vector calculus. We explore applications in thermodynamics, fluid dynamics and numerical methods using MATLAB.

Textbooks

- APEX: APEX Calculus, by Gregory Hartman (Version 4.0)
- GUI: Multivariable Calculus: Early Transcendentals, by David Guichard et al.

Lecture Schedule \& Exercises

\#	Topics	Exercises
1	- Double integrals over rectangles - Fubini's theorem and iterated integrals	$\begin{aligned} & \text { APEX } \S 13.1: 5,6 \\ & \text { GUI } \S 15.1: 1,2 \end{aligned}$
2	- Double integrals over general regions - Switching the order of integration	APEX §13.1: 7, 9, 11, 13, 17, 19 APEX §13.2: 7, 9, 13, 17, 19, 21, 25 GUI §15.1: $3,6,9,12,15,18,21,24,32$
3	- Double integrals in polar coordinates	APEX §13.3: 3, 5, 7, 9, 13, 15 GUI §15.2: $3,6,9,12,15,18$
4	- Centre of mass in 2D - Moment of inertia in 2D	APEX §13.4: 11, 15, 19, 21, 23, 27, 29 GUI §15.3: 1, 4, 7, 10, 13
5	- Mass flow rate - Hydrostatic pressure	See notes on Canvas
6	- Triple integrals - Center of mass in 3D	APEX §13.6: 5, 7, 9, 11, 15, 17, 19, 21, 23 GUI §15.5: $3,5,8,10,12,14,16$
7	- Triple integrals in cylindrical coordinates - Moment of inertia in 3D	APEX §13.7: $11,13,15,23,25,27,29$
8	- Triple integrals in spherical coordinates - Center of buoyancy	APEX §13.7: $5,7,9,17,19,31,33,35,37$ GUI §15.6: 3, 5, 7, 9, 11, 13, 15
9	- Partial derivatives - Chain rule - Material derivative	APEX §12.3: 5, 7, 9, 13, 17, 21, 25, 29, 33 APEX §12.5: 7, 9, 13, 17, 21, 25, 29 GUI §14.3: $1,3,5,7$ GUI §14.4: $1,3,5,7,8$ GUI §14.6: $1,5,9,10,11$
10	- Directional derivatives and gradient	APEX §12.6: 7, 9, 11, 15, 17, 19, 23, 25, 27
11	- Partial differential equations - Navier-Stokes equations - Heat equation	See notes Canvas
12	- Tangent planes and linearization	APEX §12.7: 5, 9, 13, 17, 21, 23 GUI §14.3: $8,9,11,12$ GUI $\S 14.5: 2,5,8,10,12,14,16,18,19,21$

13	- Critical points and optimization	APEX $\S 12.8: 5,7,9,11,13,15,17$ GUI §14.7: $1,6,14,15,16,17,18$
14	- Constrained optimization - Lagrange multipliers	GUI §14.8: $4,5,7,9,10,13,14,17$
15	- Mid-semester review	
16	- Parameterizations of surfaces	APEX §14.5: 3, 5, 7, 9, 11, 13, 15 GUI §16.6: 1,2
17	- Surface area	APEX §14.5: 17, 19, 21, 23 GUI §16.6: $3,5,7,9,12,15$
18	- Surface integrals - Center of mass of a surface	APEX §14.6: 5, 6 GUI §16.7: $1,2,3,4$
19	- Vector fields - Divergence and curl	APEX §14.2: 5, 7, 9, 11, 13, 15, 17 GUI §16.1: 1, 3, 5
20	Flux integrals - Momentum flux	APEX §14.6: 7, 9, 11, 13 GUI §16.7: $6,8,10,11$
21	- Divergence theorem	APEX §14.7: 5, 7, 13, 15, 21 GUI §16.9: 2, 4, 6, 8, 10, 12
22	- Proof of divergence theorem - Archimedes principle and buoyancy	See notes on Canvas
23	- Curves in space - Arc length	APEX §11.1: 5, 9, 12, 15, 17, 19, 21, 25 APEX §11.2: 12, 13, 14, 17, 21, 39, 41 GUI §13.1: 1, 3, 7, 9 GUI §13.2: $2,7,11,12,15,17$ GUI §13.3: 1, 3, 4
24	- Line integrals - Center of mass of a wire	APEX §14.3: 7, 9,11 GUI §16.2: $3,5,7,9,11,13,15,17,19,21$
25	- Line integrals of vector fields - Fundamental theorem of line integrals	$\begin{aligned} & \text { APEX §14.3: } 27,19,21 \\ & \text { GUI } \S 16.3: 2,4,6,8,10 \end{aligned}$
26	- Stokes theorem	APEX §14.7: 9, 11, 17, 19 GUI §16.8: $1,2,3,4,7$
27	- Proof of Stokes theorem	See notes on Canvas
28	- Advanced applications	See notes on Canvas

