# MATH 258 Differential Equations for Mechanical Engineering <br> Learning Goals, Lecture Schedule छ Exercises 

MATH 258 (in MECH 221) is an introduction to ordinary differential equations with applications in dynamics and electric circuits. The course is divided into five main topics: first order equations, second order equations, Laplace transforms, linear systems, and non-linear systems of equations.

## Learning Goals

## First Order Equations

- Solve separable equations $y^{\prime}=f(t) g(y)$ by separation of variables
- Solve linear equations $y^{\prime}+p(t) y=q(t)$ with the integrating factor
- Derive first order equations to model growth, decay, fluid mixing, friction and drag
- Sketch slope fields and describe qualitative behaviour of solutions
- Sketch phase portraits of autonomous equations $y^{\prime}=f(y)$ and classify equilibrium solutions
- Use MATLAB to implement Euler's method and numerically approximate solutions
- Use MATLAB to plot slope fields and solutions of equations


## Second Order Equations

- Solve second order homogeneous equations with constant coefficients $a y^{\prime \prime}+b y^{\prime}+c y=0$
- Identify the characteristic polynomial $p(s)=a s^{2}+b s+c$
- Compute the solution when $p(s)$ has real distinct roots, complex roots, or real repeated roots
- Solve second order non-homogeneous equations with constant coefficients $a y^{\prime \prime}+b y^{\prime}+c y=f(t)$
- Find the complimentary solution $y_{c}(t)$ of the homogeneous equation $a y^{\prime \prime}+b y^{\prime}+c y=0$
- Find any particular solution $y_{p}(t)$ of the equation $a y^{\prime \prime}+b y^{\prime}+c y=f(t)$ using the method of undetermined coefficients (aka guess and check)
- Combine $y_{c}(t)$ and $y_{p}(t)$ to form the general solution $y(t)=y_{p}(t)+y_{c}(t)$
- Derive and solve equations for mass-spring-damper systems and RLC circuits
- Classify second order vibration equations: forced, unforced, undamped, over-damped, underdamped, critically damped
- Derive general formulas for forced oscillation and describe resonance and beats


## Laplace Transforms

- Compute the Laplace transform from the definition

$$
\mathscr{L}\{f(t)\}=F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

when $f(t)$ is a combination of elementary functions: $1, t, t^{n}, e^{-\lambda t}, u(t-a), \sin (\omega t), \cos (\omega t)$

- Compute $\mathscr{L}\{f(t)\}=F(s)$ and the inverse $\mathscr{L}^{-1}\{F(s)\}=f(t)$ using the Laplace transfrom tables
- Transform differential equations in the (time) $t$-domain into algebraic equations in the (frequency) $s$-domain using the derivative properties:

$$
\begin{aligned}
& \mathscr{L}\left\{y^{\prime}(t)\right\}=s Y(s)-y(0) \\
& \mathscr{L}\left\{y^{\prime \prime}(t)\right\}=s^{2} Y(s)-s y(0)-y^{\prime}(0)
\end{aligned}
$$

- Apply the Laplace transform to circuit analysis
- Find the steady state frequency response: if $Y(s)=H(s) F(s)$ and $f(t)=A \sin (\omega t)$ then

$$
\lim _{t \rightarrow \infty}=A|H(j \omega)| \sin (\omega t+\phi), \quad \phi=\arg (H(j \omega))
$$

## Linear Systems of Equations

- Write any system of higher order ODEs as a first order system of ODEs
- Solve a linear homogeneous system of equations with constant coefficient matrix $\dot{\boldsymbol{x}}=A \boldsymbol{x}$ by the eigenvalue method for all cases: distinct real eigenvalues, complex eigenvalues, repeated eigenvalues
- Sketch phase planes of 2D linear systems: eigenvectors, nullclines, trajectories and flow directions
- Classify the origin of a linear system: sink, source, saddlepoint, spiral sink, spiral source or centre


## Non-Linear Systems Equations

- Sketch phase planes for non-linear scalar equations and classify equilibrium solutions as stable, unstable or semistable
- Given a 2D system of autonomous non-linear equations:

$$
\begin{aligned}
& \dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right) \\
& \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

- Sketch the nullclines, indicate the flow directions and identify the steady states
- Compute the Jacobian $J_{\boldsymbol{x}^{*}}$ at a steady state $\boldsymbol{x}^{*}=\left(x_{1}^{*}, x_{2}^{*}\right)$

$$
J_{x^{*}}=\left.\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right)\right|_{x_{1}=x_{1}^{*}, x_{2}=x_{2}^{*}}
$$

- Classify steady states $\boldsymbol{x}^{*}$ according to the eigenvalues of the Jacobian $J_{\boldsymbol{x}^{*}}$ in the case $\boldsymbol{x}^{*}$ is hyperbolic: the real parts of both eigenvalues of $J_{\boldsymbol{x}^{*}}$ are nonzero
- Sketch trajectories in the phase plane following nullclines and classification of steady states


## Lecture Schedule \& Exercises

Exercises are taken from our course textbooks: Notes on Diffy Qs by Jiri Lebl [JL] and Elementary Differential Equations by William F. Trench [WFT].

| Lectures | Topics | Exercises |
| :---: | :---: | :---: |
| 1 | Introduction to ODEs, solving first order separable equations | JL 1.3: 1-10,101-105 <br> WFT 2.2: 1-29 (odd), 30 |
| 2 | Linear equations and integrating factors | JL 1.4: 4-8 <br> WFT 2.1: 1-37 (odd) |
| 3 | Applications of first order equations | JL 1.4: 9-12, 103-105 WFT 4.2: $1,4,7,9,12,15,18,21$ WFT 4.3: $1,4,7,10,13,16$ |
| 4 | Graphical methods: slope fields, phase portraits of autonomous equations | JL 1.2: 1-6, 101-104 <br> JL 1.6: 3-5, 101, 102 <br> WFT 1.3: $1,3,5,7,13,15,17,19$ |
| 5 | Numerical methods: Euler's method applied to first order equations | JL 1.7: 3-6 <br> WFT 3.1: 2, 5, 6 |
| $6+7$ | Second order homogeneous equations with constant coefficients | JL 2.2: 6-14, 101-105 <br> WFT 5.1: 1, 2, 3, 38, 39, 40 WFT 5.2: 1-27 (odd) |
| $8+9$ | Second order non-homogeneous equations with constant coefficients | JL 2.5: 1-3, 9, 102 <br> WFT 5.3: 1-7, 16-23, 33-39 <br> WFT 5.4: $1,5,9,13,17,21,25,29$ <br> WFT 5.5: $1,3,7,11,15,17,22,24$, <br> $26,28,30,32,40$ |
| 10 | Mass-spring-damper systems, rotational vibrations and RLC circuits | JL 2.4: 4-6, 101, 102 <br> WFT 6.1: 1-9, 14 <br> WFT 6.2: 1-12, 22, 23, 24 <br> WFT 6.3: 1-17 (odd) |
| 11 | Forced oscillation, resonance and beats | See notes on Canvas |
| 12 | Introduction to Laplace transforms, definition and examples | WFT 8.1: 1,2 |
| $13+14$ | Properties of Laplace transforms | JL 6.1: 5-15, 101-104 <br> WFT 8.2: 1-8 <br> WFT 8.4: 1, 5, 9, 13, 17, 19, 23, 27 |
| 15 | Application of Laplace transforms to ODEs | JL 6.2: 3-6, 8, 102 WFT 8.3: 1-37 (odd) WFT 8.5: $1,5,9,13,17$ |


| $16+17$ | Applications: dynamics and impact response, <br> circuit analysis and frequency response | See notes on Canvas |
| :---: | :--- | :--- |
| 18 | Mid-semester review |  |
| 19 | Introduction to first order systems and eigen- <br> value method | JL 3.1: 4, 5, 103, 104 <br> WFT 10.1: 1, 2, 3, 5 <br> WFT 10.2: 1-5 (part (a) only) |
| 20 | Eigenvalue method for systems of equations | JL 3.4: 5-11, 101-104 <br> WFT 10.4: 1-27 (odd), 29-34 <br> WFT 10.5: 1-4, 13-16 <br> WFT 10.6: 1-6, 17-22, 29-34 |
| $21+22$ | Phase portraits of 2D systems | JL 3.5: 1, 101, 102 |
| 23 | Application of linear systems to circuit anal- <br> ysis | See notes on Canvas |
| 24 | Introduction to non-linear systems of equa- <br> tions | See notes on Canvas |
| 25 | Jacobians of 2D systems and classifying <br> steady states | JL 8.2: 1, 3-5, 101 |
| $26+27$ | Phase portraits of 2D non-linear systems | JL 8.1: 1-6, 101, 102 |
| 28 | Final review |  |

